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AbstrscL We study the generalization ability of a perceptron as a function of the SINctUral 
similarity between teacher and student. ’Ux this end we consider a teacher perceptron 
B designed to implement a cemin number of random input-autput mappings and a 
student prceplron J trained with input-xtput aramples generated ty the teacher. If 
the pattern sets of teacher and student overlap, dimerent combinations of teacher and 
student learning mles result in different generalization probabilities. Generalization can 
be facilitated or pan be hindered depending on the combination of learning ~ l e s  and 
the storage levels of teacher and student. Analylical Calculations of the generalization 
ability for several mmbinations of teacher and student learning rules am in very good 
agreement with numerical simulations. 

1. Intmduction 

One of the more interesting problems in the theory of network of formal neurons 
concerns their ability to generalize. By this one has in mind that a network 
can infer a rule from inputautput examples produced by this rule (for recent 
reviews see [l, 21. A model situation amenable to a statistical mechanics analysis 
is provided by a perceptron J ,  referred to as the student in the following, trained 
with input-output configurations which are generated by another perceptron E ,  
called the teacher [3, 11. ’RI he precise wnsider a set of a,N N-bit patterns 
E’ = { ( r } ,  j = 1,. . . , N; p = 1,. . . ,a,N generated at random with [r = k l  
with equal probability. The teacher B associates with every input vector E’ an output 
1)” according to 

Using a special learning rule the student J is then trained to reproduce these input- 
output relations {(’, rp). The generalization ability is defined as the probability 
(averaged over the statistics of the patterns) that for an additional random input 
vector (p .+’  the output of teacher and student are the same: 

Clearly g ( a ,  = 0) = 0.5 which corresponds to a random guess and g( as -+ 00) -+ 1. 
Remarkably the detailed dependence of the generalization ability g on the number 
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a,N of training examples is independent of the particular teacher perceptron B as 
long as the €Ii are uncorrelated with the patterns E’ .  In fact it turns out that g(a,) 

depends only on the norm IlBll = of B .  Consequently the interest has 
focused on the properties of the sfudenr and g(  a,) has been determined for several 
interesting situations such as different learning rules of the student [e], perceptrons 
with binary synapses [6], ‘intelligent’ students selecting the examples according to their 
present state of knowledge 19,101 and ‘complex’ students as exemplified by multilayer 
perceptrons [ll, 121. 

In the present paper we are interested in the complementary problem, namely 
the dependence of the generalization ability of the student on the sfrucfure of Ute 
teacher. lb this end we assume that the teacher B is a perceptron also designed 
by a special learning rule to implement a , N  input-output relations { C ” ,  T ” } ,  where 
now the {y as well as the T” are independent random variables. The so-constructed 
teacher then associates an output qJ’ to all questions (” of the student according to 
(1) and the generalization ability is again given by (2). It is clear that there will be no 
difference to the case of an uncorrelated teacher described above if the pattern sets 
{C”} and {(F} are disjoint. If, however, part of the student’s questions { E ’ )  belong 
to the patterns { C ” }  the teacher himself is trained with non-trivial correlations, with 
interesting consequences. 

Our main interest will be to study whether the generalization ability is different for 
a teacher and a student using the Same learning rule, i.e. being ‘structured similarly’, 
as compared with two perceptrons using different learning rules. It seems at first 
sight that it will always be advantageous to the student to ask questions out of the 
set { C ” } ;  this is, however, not the case. Moreover, it is interesting to investigate 
whether the very peculiar phenomenon of ‘overfitting’ as found for a student using 
the pseudo-inverse rule to generalize an uncorrelated teacher [SI can be compensated 
by using a teacher also designed by this rule. 

The paper is organized as follows. In section 2 we briefly review some results on 
the generalization ability for an uncorrelated teacher relevant for a later comparison 
with our findings. Section 3 defines our model and sketches the determination 
of g ( a , )  for several combinations of teacher and student learning rules. Some 
representative calculations are discussed in somewhat more detail in the appendices. 
In section 4 we discuss our analytical results and compare them with numerical 
simulations finding very good agreement. Finally section 5 contains our conclusions. 
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2. Generalization from uncorrelated teachers 

In this section we briefly review the results obtained for the generalization ability in 
the case of an uncorrelated teacher which we need for later comparison. We mainly 
refer to the paper of Opper ef al [SI. The teacher perceptron is given by an arbitrary 
vector B E RN with norm IIB(( = fi. The student’s questions are random patterns 
(”, p = 1 , .  . . , a ,N  where the r: are independently chosen to be f l  with equal 
probability. It is essential that B is the same for all realizations { C O }  of the patterns, 
i.e. there are no correlations between the structure of the teacher and the questions 
of the student. The corresponding answers 7’ of the teacher are given by (1). we 
consider three learning rules for the student in detail: 

(i) The Hebb d e .  Here J is explicitly given by 
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Figure 1. Two-dimensional hyperplane in 
the space of pattems { c r )  spanned by 
the synaptic veclon B and 3. ’bcher 
and student give differenl output for 
pattems with projection in lhe shaded 
region. For large N the generalization 
abilitywill thus approach g = l -v/n = 
1 - ( I / = )  ms-l p. 

(ii) The pseudo-inverse nrk. J is defined as the vector minimizing 

For a, < 1 the minimum of E is zero and there are different vectors with this value 
of E. J is then defined as the vector with E( J) = 0 and minimal norm. For as > 1 
(4) defines J uniquely. 

(iii) The optimal perceptron. Following Gardner [13] J is defined as the vector 
with norm llJll = fl maximizing the so-called stability 

All the analytical calculations are done in the thermodynamic limit N - 00. The 
generalization ability g ( a , )  as defined by (2) then depends only on the normalized 
overlap 

between the synaptic vectors of teacher and student and is given by IS] 

(7) 
g( a,) = 1 - -cos- 1 ,  p(a, )  . 

7T 

Figure 1 gives a geometrical interpretation of this relation. The overlap (6) can be 
calculated analytically for the three student learning rules dcfined by (3)-(5). The 
results for g(a,)  are summarized in figure 2 For as < 0.4 the three learning 
rules give rather similar results for g whereas for large as the optimal perceptron 
generalizes best. Very remarkable is the minimum of g ( a , )  at a, = 1 for the pseudo- 
inverse rule. The decrease of the generalization ability for 0.6 < a, < 1 is called 
‘overfitting’ and is due to the fact that the student tries to reproduce the examples 
too accurately [14]. 
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Figure 2. Generalization ability as 
a function of the relative number of 
lraining aramples for an unmmlated 
leacher and different Student learning 

0.5 rules; full curve: pseudo-inverse NI=; 
broken CUNC: optimal perceptmn; dotted 

o,6L a 5  

curve: Hebb mle (from [SI). 

2 3 4 5 

Y I-Y 

Flgure 3. Panilion oi the set of examples in ‘known’ and ‘unknown’ questions. 

3. Generalization fmm educated teachers 

We now study the situation where the teacher has been designed himself by some 
learning rule. Accordingly the couplings B were adjusted to realize a given set 
of random input-output relations { c ” , ~ ” ) ,  U = 1,. . . , a , N .  The student is then 
trained with examples { (p ,q ” ) ,p  = 1 , .  . . , a,N,  where the E’ are again chosen 
randomly and the 1)” are generated by the teacher according to qfi = sign(B. E ’ ) .  
As explained in the introduction the interesting situation arises if the pattern sets 
{ e ” )  and IC’) do overlap. We therefore assume 

p‘ = E*’ for p’ = 1 , .  . . ,ya,N (8) 
with 0 < y < 1. Hence the student asks ya ,N questions ‘known’ and (1 - y ) a , N  
questions ‘unknown’ to the teacher. The relation between the pattern sets { E ” )  and 
{ C ” )  characterized by y is schematically depicted in figure 3. Note that since a, is 
fixed during a learning session of the student we have always as < a , / y .  Hence the 
curves g(a,) for k e d  y will not continue to a, + m but end at os = a , / y .  It is 
impossible to continue learning beyond this point without reducing the percentage y 
of known examples. 

In order to calculate the generalization ability g(a , )  one has to determine the 
overlap 

where the average is over the distributions of c”, T” and <p. Note that for 7 = 0 Or 
at + M we are dealing with an uncorrelated teacher and therefore have to reproduce 
the results discussed in section 2 
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In the present section we discuss the calculation of g ( a , )  for a Hebbian student 
generalizing a Hebbian teacher (case A) and for a Hebbian student generalizing 
a pseudohverse teacher (case B). We sketch the derivations for a pseudo-inverse 
student and a Hebbian teacher (case C) and finally a pseudo-inverse student with a 
pseudo-inverse teacher (case D). The latter two cases are explained in more detail in 
the appendices. The results are discussed together in the next section. 

Case A.  
the Hebb rule. We then have 

Let us first mnsider the simplest case where both teacher and student use 

*.N 

(11) 
1 

J .  = - z s i g n ( B .  E.)Ef ( j  = 1,. . . , N ) .  ’ a.=, 
For N + 00 the distributions of R := &B. J, &llB112 and $11511’ become sharp 
and we have 

From (IO) we immediately find (-$lBllz) = 1. Tb average R and &llJI12 we have to 
distinguish between known and unknown examples: 

For k e d  r” and C”, &B. E.’’ is a Gaussian random variable with mean 0 and 
variance (AllB112). This yields 

2 
(RJ  = (1  - 7 ) / ; a , .  

On the other hand & B .  C” is for tixed r” a Gaussian random variable with mean 
r”’/J“; and variance 1, giving 

m 
where H is defined by H ( z )  = / d t ( l /&)  exp(-tz/2). 

0 
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So we get 

(14) 
In order to calculate (kllJ1lZ) we have to distinguish three cases of double sums 
since kllJ112 is quadratic in CpL, sign(&B. E”)Cf.  Averaging each term gives 
similarly 

o N .  

+ ;ex, A (- $)I}. 
For y = 0 or a, - 00 we find from (14) and (15) 

i.e. the well known results for an uncorrelated teacher 14.51, 

Case B. Next we consider a Hehhian student generalizing a pseudo-inverse 
teacher. The student’s couplings J are still given by (11). As in (13) we write 
R = R, + R,. The calculation of R, is almost identical to the previous case 
and gives (R,) = (1  - ~ ) , / m ( k l l B 1 1 ~ ) .  Restricting ourselves to a, < 1 
we have &B . CJ” = ?’ and hence (Rk) = TA. In order to calculate 
(&llB112) and (&11J112) we represent the pseudo-inverse rule by an integral over 
the space of couplings B 1131. In this way we get (&llB112) =(($llB112)B) and 
(kllJllZ) = ((k11J1I2)B) with 

* , N  n dBj U 6(7”  - & B .  C”)~(11Bl12 - N Q i ) f ( B )  
j = 1  v = l  . (17) *,N 

;=I  v = l  

I N  
n d B j  H 6(r” - & B .  C”)~(llB1lZ - NQ,) J ”  

(f(BNB = lim 
Q,-min 

?he limit of minimal norm Q, - min eliminates all components of B orthogonal to 
the subspace spanned hy the patterns {C”}. Using standard techniques (1131, see also 
appendix A) we get (kllB112) = a,/l-  a,. A similar calculation can he performed 
to determine (k11J112). We finally find with (12) 

Again y = 0 gives the result (16) for an uncorrelated teacher. 



Generalizalion of educaled reachers 6655 

Case C. In the complementary case of a pseudo-inverse student generalizing a 
Hebbian teacher the teacher’s rule is explicitly given by (10). It is again convenient to 
represent the pseudo-inverse rule by an integral over the space of couplings J .  Let 
us l int  mnsider the case as < 1. Similarly to (17) we then have to calculate ( P ) ~  
where 

N a,N 

j = 1  p=l 
n dJj n 6 ( ~ ’ -  ~ J ~ E ’ ) 6 ( I I J 1 1 2  - N Q A d J )  

n dJj n 6 ( V -  &J.€”)6(IlJI12 - NQ,)  
(19) N o , N  

J 
1 j=1 )1=1 

( d J ) ) J  = lim Q,-mim 

The pattern average can be performed using the replica trick. The resulting 
integrals are disentangled introducing order parameters and the remaining integrals 
are calculated by the saddle-point method. Some details of the calculation can be 
found in appendix k Assuming replica symmetry p can be determined from the 
following saddle-point equations: 

with 

Again y = 0 or a, + CO lead to the results for an uncorrelated teacher [5] 

For a, > 1, ( g ( J ) ) J  is not well defined by (19) and wc have to use instead 

This form takes into consideration the fact that for a, > 1 no vector J exists which 
makes the quadratic form in the exponent exactly zero. A calculation almost identical 
to as < 1 now yields 

(23) 
1 + 2(a,  - 1)MR - (1 - z ) M z  - 2&M[1- 2H( &)] 

0% - 1 Q. = 
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with 
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As before we find the correct behaviour for y = 0 and oil + 00 [SI: 

R = E  Q,= l + R 2 ( a , - 2 )  
as- 1 

Note that for as -3 1 from above as well as from below Q, diverges, implying 
g( a,) = 0.5. 

Case D. In order to calculate the overlap p between teacher and student for the 
case in which both use the pseudo-inverse rule we write p as an integral over the 
coupling spaces of teacher and student: 

where the averages are defined in (17), (19) and (22). In order to do the 
pattern average in (25) we introduce replica-indices a = 1,. . . , m for the B, and 
a = 1,. . . , for the J,. Note that the average over J in (19) depends via q' 
parametically on B, hence the J-average has to be done before the average over B .  
Accordingly the limit n -+ 0 has to be taken before the limit ni + 0. T h i s  will be 
important to get the correct saddle-point equations for the order parameters (see 
appendix B). These are, for a, < 1, 

and for as > 1 

with 

For y = 0 we get hack the results for a pseudo-inverse rule generalizing an 
uncorrelated teacher (see (21) and (24)). 
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4. Results 

Let U first consider the case where both teacher and student are designed by the 
Hebb rule. In figure 4 we plot the generalization ability g versus as for a, = 0.1 and 
different values of the parameter y describing the overlap between the pattern Sets 
of teacher and student. The curves show the expected behaviour. With increasing y 
the student is more and more trained with the same patterns as the teacher and the 
generalization ability grows. Note, however, that even for y = 1 the curve does not 
end at g ( a ,  = a,) = 1 because the teacher made a small percentage of mistakes in 
learning his patterns [15]) so that the student does not, in all cases, get the answers 
the teacher was trained with. 

1 .o 

0.9 

- 0.8 Figure 4 Generalization ability versus 
relative n u m k r  of training examples 

0.7 far a Hebbian student generalizing a 
Hebbian teacher with a, = 0.1. The 
parameter 7 has values 1,0.9, . . . , O  
(from top to bottom). Dhe circles are 
simulalion results for system size N = 

0.5 SO for 7 = 1, O S  and 0 respectively 
averaged Over lypically ZOmO samples of 

a“ 
v 
m 

0.6 

0.0 0.2 0.4 0.6 0.8 

as random pattems. 

It is somewhat surprising that the value of g at the endpoints of the curves 
decreases with increasing as. Consider, for example, the two curves for y = 1 and 
y = 0.9. The endpoint of the y = 0.9 curve corresponds to a student who has 
asked O.llN questions 0.1N of which were those the teacher had learnt himself. 
Since the succession of questions is irrelevant we can imagine that the student first 
asks these questions. His generalization ability is then given by the endpoint of the 
y = 1 curve, i.e. g IT 0.98. Asking now the remaining 0.01N questions g decreases 
to g Y 0.90. Naively one would expect g to continue to increase since the additional 
questions yield additional information about the teacher to the student. Although 
this is true the Hebbian student is not able to use this inlormation properly. In 
fact he overestimates it thereby reducing his similarity with the teacher. An extreme 
example is given by two identical perceptrons B = J ,  i.e. g exactly equal to 1. If the 
student nevertheless poses an additional question 6’ he gets an answer 17’’ and has 
to increment his couplings by A J  - (+q’. Thcrefore teacher and student now differ 
from each other and g will decrease from 1. 

Figure 5 shows that the behaviour remains qualitatively the same for larger values 
of a,. Still it is advantageous to the student to ask those questions the teacher was 
designed with although he will already get approximately 14% wrong answers for 
a, = 1. For a, -+ 00 all curves collapse to the y = 0 curve identical to the Hebb-rule 
result of figure 2. 

Consider now the case where a Hebbian student generalizes a teacher designed 
by the pseudo-inverse rule. As shown in figure 6 the behaviour is rather similar to 
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0.9 

0.54 
0 1 2 3 4 5 6 

0 s  Figure 5. Same as figure 4 for 01, = 1. 

0.5-I , , , , , , . ,~ . , Figure 6 Same as figure 4 far a Hebbian 
sludent generalizing a teacher designed 
by the pseudo-inverse rule wilh at = 0.1. 

0.0 0.2 0.4 0.6 0.8 1 .o 

as 

the case discussed above if a, is small. This was to he expected since for small a, 
the synaptic vectors B produced by the Hebb rule and by the pseudo-inverse rule 
are not too different. So again it is advantageous to the student to ask the teacher 
the known questions. The resulting values of g are always slightly below those of the 
previous case with the largest deviation occurring at the end point of the y = 1 curve 
where now only the value g 5 0.90 is reached. 

The situation is markedly differrent for larger values of a,. Figure 7 shows the 
results for a, = 0.9. For a given value of a, the generalization ability is now 
decreasing with increasing y. Hence it is now disadvantageous to the student to ask 
those questions the teacher has learnt himself. The reason for this is that the synaptic 
vector B produced by the pseudo-inverse rule at sulficiently large values of a, is rather 
different from the one resulting from the Hebb rule. The hest strategy for the student 
to generalize is therefore now to ask questions the teacher has never heard of. Then 
the generalization ability is the Same as for an uncorrelated teacher. Any overlap 
with the questions the teacher has learnt himself will reduce the generalization ability 
since teacher and student use rather different internal structures to store the required 
input-output relations. 

The complementary case is given by a student using the pseudo-inverse rule to 
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0.9- 

- 0.8- 
a" 
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0.7- 
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Pigure 1. Same as figure 4 for a Hebbian 
sludenl generalizing a leacher designed 
by lhe pwudo-inverse nile with m, = 0.9. 
Ihe values of 7 are 0,0.1, . . . , 1  (from 
lop lo bottom). 

- 0.8 
a" 
m 

0.7 

0.6 

Figure a Same as figure 4 for a 
0.5 Student using the pseudo-inverse tule 

10 eeneralize a Hebbian teacher, î = 0.0 0.2 0.4 0.6 0.8 - 
as 1,0.9, .  . . , O  (left from top 10 bottom). 

generalize a Hebbian teacher. As can be seen in figure 8 it is, for small as, again 
advantageous to the student to ask the teacher the known questions. Eowever, with 
increasing values of a, the student uses an internal structure becoming more and 
more different from the one of the teacher and accordingly becomes more confused 
than enlightened from the answers of the teacher to these questions. So if the student 
is allowed to pose only a rather limited number of questions he should choose the 
questions the teacher has learnt himself. If, however, he may ask many questions he 
should avoid these and try to make up his own mind. Note that the results of the last 
two cases are consistent with each other although they have been obtained by using 
rather different techniques. 

Finally we discuss the case of two perceptrons using both the pseudo-inverse 
rules. In particular we are interested to see whether it is possible to compensate the 
decrease of 9 around a, = 1 by using a large enough value of 7. For Small values of 
er UJp geC resc!!s simi!ar to figurc 8 as expected: For ai = 0.9 the behaviour of .(ab) 
is shown in figure 9. One clearly sees that the overfitting phenomenon persists and in 
particular that always g( a8 = 1) = 0.5 as can also be seen analytically from (26) and 
(27). With increasing y the maximum of g(  as) is shifted towards larger values of as, 
so there is at least a tendency to reduce overfitting. For y = 1 we have as < a, = 0.9 
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a 

Figure 9. Same as figure 4 for both 
leacher and student using the pseudo- 
inversc rule and 01, = 0.9. 7 = 
0,0 .5 ,0 .9  and 1.0 (left from Iop lo 
botlom). Simulation resulls are for N = 
50 avcraged Over typically 31333 samples 
of random patterns. 

Figure IO. Normalized overlap p 
klween two perceptmns using differenl 
learning rules for staring the Same 
pattcrns as a function of the storage 
mtio 0. Full curve: pseudo-inverse 
rule versus optimal perccplron; broken 
line: pseudo-inverse rule versus Hebb- 
rule; dolled a w e :  Hebb rule venus 
optimal perceptron. 

and hence no overfitting occurs at all. Note that now it is disadvantageous for small 
values of a, to ask questions the teacher has leamt himself and becomes increasingly 
helpful for larger values of as. This can be clearly seen from a comparison of the 
CUNeS for y = 0 and y = 1. 

We have also studied the cases where a teacher designed by the optimal 
perceptron rule is generalized by a Hebbian or a pseudo-inverse student as well as 
the complementary cases of a student using the optimal perceptron rule to generalize 
a Hebbian or a pseudo-inverse teacher [16]. The analytical calculations are rather 
similar to the cases where instead of the optimal perceptron rule the pseudo-inverse 
rule is used. As long as a is not too near to 1 the results are qualitatively the same (cf 
also figure 10; see below). If both teacher and student use the optimal perceptron rule 
the calculations can also be performed, although the resulting saddle-point equations 
become more complicated. 

5. Summary 

In the present paper we have analysed the generalization ability g( a,) of a student 
perceptron J on the basis of input-output examples { E ” , V ’ }  generated by a 



Generalizaiion of educaied reachers 6661 

teacher perceptron B. Contrary to most previous studies which concentrated on 
the dependence of g(a,)  on the properties of the student alone we were interested 
in the influence of the structural similarity between teacher and student. Somewhat 
related problems that were studied in the literature concern the generalization ability 
for a binary teacher E, = h 1  and a student with continuous synapses [7l as well 
as the dependence of g(a,) on different continuous input-output characteristics of 
teacher and student [17]. 

In the present study we have assumed that the teacher perceptron is designed 
using some learning rule to store a given number of random input-output mappings 
{ C”, 7 ” ) .  If now a fraction y of the student’s questions E’ are identical to some of 
the patterns C” which the teacher was trained with himself, interesting correlations 
between the learning rules of teacher and student arise. As representative examples 
for learning rules we have used the Hebb rule, the pseudo-inverse rule and the 
perceptron rule of optima! stability, We have determined B e  dependence of the 
generalization ability g(a,) on the fraction y of identical patterns in the training sets 
of teacher and student for all possible combinations of the above-mentioned learning 
rules except for the case where both teacher and student use the perceptron rule. 

Our main result is that overlapping pattern sets, i.e. y > 0, can be both 
advantageous and disadvantageous for optimal generalization. They are advantegeous 
if teacher and student are structured similarly, as when they use the same learning 
rule and have similar storage ratios a, 2 as. On the other hand they can affect 
generalization adversely if different rules are used and/or the storage ratios are 
markedly different. The reason for this is that using different learning rules for 
storing the same set of patterns may result in rather different synaptic vectors for 
teacher and student. This has also been discussed recently by Wong er al [18]. In 
figure 10 we plot the normalized overlap between teacher and student as a function 
of the storage ratio a for different combinations of learning rules storing exactly 
the Same set of patterns. For small values of a the different synaptic vectors are 
still rather similar but become more and more different with increasing a. One also 
clearly sees that the pseudo-inverse rule produces for values of a around 1 a very 
special synaptic vector [14]. If now a Hehbian student tries to generalize a pseudo- 
inverse teacher the same patterns are stored internally in a rather different fashion 
and it is hence questionable whether overlapping pattern sets are helpful. In fact our 
results show that for not too small values of a, the student should avoid questions 
out of the pattern set the teacher learnt himself. The generalization ability is higher 
if he adapts to the answers qJ’ the teacher gives on questions E @  that do not belong 
to his own training set. For given values of a, and as, the storage ratios of teacher 
and student respectively, we have never found an optimal value of y somewhere 
between the extreme cases y = 0 and y = ymlx. That means that for getting a 
high generalization probability one should, depending on a, and as, either avoid 
completely any correlation between the pattern sets of teacher and student or use 
them as much as possible. 

Another interesting result concerns the case where both teacher and student 
use the same learning rule. Posing questions out of the teacher’s training set the 
generalization ability increases rather quickly. If now some questions not contained in 
the teacher’s pattern set are added the generalization ability can again decrease. This 
seems strange since any input-output pair produced by the teacher yields additional 
information about the teacher to the student. Nevertheless it is difficult for the 
student to use this information properly. As we have shown it is rather likely that he 
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overestimates the information in the additional examples, which results in an effective 
synaptic noise that reduces the generalization ability. 

Finally we were interested to see whether the very peculiar phenomenon of 
overfitting of the pseudo-inverse rule could be compensated by using a teacher also 
designed by this rule. The result is negative. Although it is possible to narrow the 
interval of a,-values where g ( a , )  is small by using large values of y we find always 
g(a, = 1) = 0.5. The reason for this is the singular norm of the synaptic vector 
produced by the pseudo-inverse rule for a - 1 (cf also figure 10). 

L Reimers and A Engel 
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Appendix A 

In this appendix we perform the replica calculation for a pseudo-inverse student 
generalizing a Hebbian teacher. For as < 1 we start with (19) which, introducing 
replicas, can be written as 

In order to perform the average over T ” ,  cy, Ef we introduce 

via &functions and their Fourier representations 

JndB;$% 
I 
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We now average over c; and c! and introduce the order parameters 

q,"P .- 1 
.- ,CJ;J: 

R":= - - C B , J ~  

( a , ~ =  I, ..., n a + ~ )  
I 

1 
N 

1 
N 

( a =  I, ..., n) 
I 

M a : =  - C A I J ;  ( a =  1, . . . ,  n )  
J 

Y : = ~ C A , B , .  1 

I 

We then obtain 

p =  lim J dydr J n dqPPdf"' de- - dR"dG" dM"dIi"  
Q.P 2 a f N  a<P 2 a l N  4rr 2 a f N  2 ~ f N  

(I " < P  

- i c  RaGa  - i s  M"1i" + G , ( e , f , G , K , z )  
U U 

+(l--/)a,Gl(q, ,R) + r a , G i ( q , , R , M , y )  

with 

G, = log! F / n d J a  dAdB exp (i(l + r ) A B  - - A Z  - A ' c e U ( J a ) Z  2 2  

+ i f "PJ"J0  + iB G"J" + iA 1i"J") 
a<P 0 01 I 

('44) 

GI = log/ n exp - 5 Rex" + isign(u) Ex" 
a " 

(-4-5) 

I a " * # P  

a a 

dxa duds 
Gi = l o g / n  2rr / 2 a e ~ p  - 5 c R " x "  + isign(u) Cz" 

We solve the integral by the saddle-point method and use a replica-symmetric ansatz 
for the order parameters. This gives 
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+ iQ,e + iq, f - 2iRG - 2 i M K  + log 

Since all saddle-point equations are algebraic we can solve them analytically. 
Note that the derivative O { . . . ) / a y  = 0 yields z = O(n) and therefore 
log(l+ z )  = z + o(nZ). [1/1+ z! = 1 - z + o(nZ) and !1/(1+ z)!’ = 1 - 2z + 
o(n2). Taking finally the limit of minimal norm in the form q5 + Q, we find (20). 
For a, > 1 the calculation is almost identical except for Q, becoming a saddle-point 
variable. The saddle-point equations result in (23). 

Appendix B 

In this appendix we perform the replica calculation for a pseudo-inverse student 
generalizing a pseudo-inverse teacher for < 1. We start from (25): 

We introduce u p ”  := -&B’ . I”‘ for the unknown examples (p” = ya ,N + 
1,. . . , a , N )  only since sign(B . ( p ’ )  = T”’ for the known examples due to 
oil < 1 (p’ = c” : p‘ = 1, . . . , y a , N ) .  Using Fourier representations of the 
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&functions we get 

This yields 

- i qPb Fa' - i qrP  f O 4  - i R"" G"" + G,( E ,  Fe, f , G )  
a < b  a<@ *a 
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The order parameter integrals in (B4) can be solved by the saddle-point method. 
Since B' plays a special role we use the modified replica-symmetric ansatz 

We then find 
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Now we first have to solve the saddle-point equations for the order parameters 
e, f, qr, R,, RIGu, GI from df, = 0. This yields 

Hence the saddle-point values of these order parameters still depend on E, F and Q1. 
Next we take the limit n i 0 and determine the saddle-point values of E, F and Qt 
from the O(m)-terms alone. This procedure corresponds to the appropriate order 
of limits (first n -+ 0, then m -+ 0) and reflects the fact that the teacher is not 
influenced by the student but vice versa. Accordingly we get for E, F and QI the 
standard saddle-point equations for the pseudo-inverse rule 

Plugging this into (B9) we get (26). Note that because of R, - RI - Ql - q1 we have 
&I - RI -+ 0 for q1 - Ql. Tiking, however, R, = R, = R already in the ansatz 
(B6) makes f, independent of R and hence gives no equation for R. 

In the case of as > 1 the calculation is almost the same. The most important 
difference is that Q, - QP := &Cj(Jp)' becomes a saddle-point variable, the 
saddle-point equation of which results from the limit p -+ M. We finally get (27). 
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